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Kinks in a system of adatomic chains 
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Abstract. The quasi-two-dimensional system of coupled Frenkel-Kontorova chains (so- 
calledx-chains, which are classical harmonicchainsof atoms in aperiodic substrate potential) 
is considered. We study the case when each x-chain has a kink (x-kink) that corresponds to 
the x-chain state with an excess atom with respect to the commensurate atomic structure. 
The model parameters for which x-kinks in the neighbouring atomic chains attract one 
another and form a stable chain of x-kinks (ay-chain ofx-kinks) are determined. We derive 
an effective Hamiltonian describing the behaviour of the y-chain and calculate the parameters 
of a y-kink (secondary kink). The applicability of the model to describe the dynamics of 
quasi-two-dimensional atomic layers adsorbed on metal surfaces is discussed. 

1. Introduction 

Investigations of non-linear phenomena in two-dimensional systems are very important 
from theoretical and experimental viewpoints (see e.g. [l]). In particular, the study of 
the mobility of atoms in two-dimensional atomic layers adsorbed on crystal surfaces 
has a special practical interest (e.g. [2,3]). But the examination of an isotropic two- 
dimensional layer of adatoms is a rather difficult problem (e.g. [4]). However, in a 
number of cases the adlayer is highly anisotropic, and it can be considered as a quasi- 
one-dimensional system of interacting chains [ 5 ] .  First, this is the case of adsorption on 
‘furrowed’ crystal surfaces, such as the (1 12) face of a BCC crystal or the (1 10) face of a 
FCC crystal, when the surface potential along the ‘furrow’ is much lower than that in 
another direction. Secondly, this situation takes place for adsorption on stepped (vicinal) 
surfaces when substrate atoms on the step have additional unsaturated chemical bonds 
and, therefore, the adatoms are predominantly adsorbed on the step, where their 
coupling with the substrate is stronger. In both cases we can assume that adatom motion 
is possible in one direction only, i.e. along the furrows or the steps. As a result, we can 
consider a quasi-two-dimensional model corresponding to a system of parallel Frenkel- 
Kontorova (FK) chains [6]. Similar models including a harmonic local interaction 
between neighbouring chains were used in a number of theoretical papers (see e.g. [2] 
and [7]). 

In the present paper we propose and study a quasi-two-dimensional model describing 
a system of FK chains with local inter-chain interactions of a general type. The paper is 
organised as follows. The model is described in section 2. Section 3 is devoted to 
the investigation of the interaction between kinks in the neighbouring FK chains and 
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determination of the conditions when the kinks form a bound inter-chain state that is 
perpendicular to the x-chain direction. In section 4 we obtain an effective Hamiltonian 
for the chain of x-kinks (y-chain) and study excitations of this system. Finally, in 
section 5 we discuss the applicability of the proposed model to describe the dynamic 
characteristics of atomic layers adsorbed on metal surfaces. 

2. Model 

The dynamics of an isolated atomic chain adsorbed on a surface can be considered in 
the framework of the FK model [6], which describes a chain of atoms of mass m, subjected 
to a periodic substrate potential with period a and amplitude E , .  The nearest-neighbour 
atoms of the chain interact by a harmonic potential with constant g, so that the Ham- 
iltonian of the system takes the form 

Here the functions uk are the displacements of adatoms from the bottoms of the periodic 
substrate potential. Below, we will use dimensionless units in which a = 2n, ma = 1 and 
Ea = 2. 

It is important to note that the Hamiltonian (2.1) also describes a number of physical 
phenomena such as dislocations in one-dimensional solids, planar domain walls in 
magnetic systems, charge-density waves in quasi-one-dimensional conductors, and so 
on (see e.g. [ l ]  and [SI). Besides, there are various generalisations of the usual FK model 
that takeinto account anon-sinusoidalsubstratepotential[9-111, an anharmonic [ l l ,  121 
and non-local [ 111 inter-particle interactions, and the case of arbitrary concentration of 
adatoms [ 113. 

It is well known that in the FK model a mass transfer is carried out by topological 
solitons or so-called kinks (or antikinks), which describe the behaviour of excess atoms 
(vacancies) in the commensurate adatomic structure. These ‘primary’ kinks we will call 
x-kinks. Thex-kink is a quasi-particle with coordinate X ,  size (or width) do and effective 
mass mo; the creation of a kink-antikink pair in the commensurate structure needs some 
energy 2 ~ ” .  

l ) ,  when the 
inter-particle interaction along the chain is much greater than the interaction with the 
substrate potential. In this case we may use the continuum approximation (i-+ x = ka, 
uk+ u(x)); the Hamiltonian (2.1) transfers to that of the well known sine-Gordon 
system: 

In this paper we will consider the case of the so-called rigid chain (g 

I 2 
H[u]  = a-l  1 dx[:($)* + & d ; ( s )  + (1 - cos U) 

and a kink (antikink) with the topological charge a = $1 ( a  = -1) has the simple 
analytical form 

u(x) = uSG(x; X ,  do)  = 4 tan-’{exp[-a(x - X ) / d O ] }  (2 .3)  
so that 

d - a 112 
0 -  g 

mo = 4 / n d 0  
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and 
= 4do/n .  

If X = Vt, V being a constant, then the expression (2.3) describes the kink motion in the 
non-relativistic case (V2 < 1). However, it should be taken into account that, in a real 
discrete chain, kinks move in a periodic Peierls potential with period a and amplitude 
ep. The latter is related to the kink width do by the approximate relation (e.g. [13]) 

= Qn2d: exp( -nd0/2) .  (2.7) 
In the general case, adatomic chains are not isolated; there is an interaction between 

chains due to the interaction between adatoms in different chains. It should be pointed 
out that the energy u(x) of the interaction between two neighbouring atoms chemisorbed 
in nearest wells of different chains and relatively shifted by some distance x can be 
measured experimentally as well as estimated theoretically (see the survey [14]). In [5] 
we have proposed the following local form for the addendum to the system Hamiltonian 
due to the interaction of two nearest adatomic chains, 

au ,  a u 2  
Hint[ul, u2] = 1 dx( - a[l - cos(ul - u 2 ) ]  + y --) (2.8) ax ax 

where ul(x) and u2(x) are the atomic displacements in the chains. The first term in (2.8) 
is a generalisation of the usual expression of elasticity theory. Indeed, in the case of 
small relative shifts (I u1 - u2 I < 2n) it takes the form 

H i n t [ u l , u 2 ]  = a - ' 4 ( - a ) I d x ( u l  - u 2 ) 2  (2.9) 

and the parameter 

is the elastic constant; usually 1 a/ 5 g. The expression (2.9) was used in a number of 
papers [ 2 , 7 ] .  However, the expression (2.8) takes into account that the energy should 
be unchanged if the positions of all atoms of one chain are shifted by the value 2 n k ,  k 
being an integer. The second term ( - y )  in (2.8) takes into account the interaction of 
non-uniform states of chains. Using the method of our paper [ll] it can be shown that 
this interaction should have the form 

-d2v/d2X (2.10) 

where it is assumed that v(w) = 0. The physical sense of the expression is rather simple: 
it describes the interaction of excess atoms in the chains, the density of excess atoms 
being proportional to du(x)/ax. If the interaction range 1 of the potential u(x)  is much 
less than the kink width d, then a local approximation can be used in which the expression 
u(x) = ay@) is postulated. Then the expression (2.11) reduces to the second term of 
(2.8), and the parameter y can be estimated as 

y = u-l  1 dx  u(x). (2.12) 

From equations (2.10) and (2.12) it can be seen that, in the case of a monotonic attraction 
of adatoms, we must take a, y < 0, and in the opposite case, e.g. for the dipole-dipole 
repulsion of adatoms [14], the inequality a, y > 0 is valid. 

The interaction between chains leads to interaction between x-kinks belonging to 
different x-chains of adatoms. In the case of weak coupling ( 1  (Y 1, I y l /d i  4 1 )  this inter- 
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n - 2  4 Figure 1. The system of x-chains containing kinks 
of equal polarities. For simplicity, we present 
functions du,(x)/dx on the figure. 

action was investigated in the framework of the soliton perturbation theory [ 5 ] .  In the 
present paper we will consider the planar (quasi-two-dimensional) system of coupled 
adatomic chains with the Hamiltonian 

(2.13) 

where n stands for the number of the chain. It is important to note that the simplified 
version of the model, when y = 0, - 1 4 a < 0 (i.e. 1 U,, - U, - 1 4 2n) was used in [2,7]. 

3. Stability of they-chain of x-kinks 

Let us consider an adsorbed layer with a constant concentration of adatoms when each 
x-chain contains only one x-kink, all x-kinks being of the same polarity, a,, = 1. As was 
shown in [ 5 ] ,  x-kinks belonging to different interacting chains can repel as well as attract 
one another depending on the parameters of the model. It is obvious that, in the case of 
attraction, two x-kinks belonging to different chains will form a bound state. Therefore, 
in this case the quasi-two-dimensional chain-like system has a stable linear chain of kinks, 
which we will call the y-chain of x-kinks (see figure 1). To describe the ground state in 
the case of kink attraction, we put un(x) = u(x) for all n, so that the Hamiltonian (2.13) 
takes the form 

X o  = N{a-l I dx[i($)2 + t d z ( g ) 2  + (1 - cosu)]] 

where N is the number of the x-chains ( N  % l), and 

d2 = d; + 2y. 
Thus, the shape of x-kinks in the y-chain is described by the same function (2.3) but with 
do replaced by d ,  i.e. 

U(X) = uSG(X; X ,  d). (3.3) 
As we may see from (3.2) and (3.3), repulsion of adatoms ( y  > 0) leads to increasing of 
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the kink width ( d  > do) ,  and their attraction ( y  < 0) leads to kink contraction ( d  < d o ) ,  
However, our local approximation (2.8) is valid only for d % 1,  a ;  otherwise the non- 
local model (2.11) has to be used. 

To investigate the stability of the y-chain of x-kinks we substitute the expression 

into equations (2.13), (2.2) and (2.8), and linearise the Hamiltonian and equations of 
motion in small displacements q&). As a result, we obtain the linear equation 

where Y(x) is the column vector with elements vll(x), and i is the three-diagonal 
symmetric matrix 

un(x)  = u(x) + q n ( x )  exp(iA.'/2t) /v l l I<2J t  (3.4) 

iY(x) = ilY(x) (3.5) 

i =  [ : : : o L , ; L , o  . . .  0 0 L ,  Lo L ,  0 0 j 
. . .  0 0 L ,  Lo L ,  . . . 
. . .  . . .  

where 

Lo COS U(X) - 2a - d i  d2/dx2 

L, = CY - y a2/ax2. 
It is easy to show that oscillations of the y-chain with wavenumber K ,  presented as 

v n = elKn v (x )  IKI < Jt (3 * 8) 
have smallest energy. Therefore, the function q ( x )  must be an eigenfunction of the 
operator L = Lo + (elK + e-IK)L1. Thus, we come to the eigenvalue equation 

with the operator 
L(K)  = cos u(x) - 2a(1 - cos K )  - [d2 - 2y(1 - cos K ) ]  d2/dx2. (3.10) 
Substituting the expression (3.3) for the function u(x) into (3.10), we obtain that the 
operator L ( K )  is a Poschl-Teller type operator (see e.g. [15]). Its minimum eigenvalue 

(3.11) 

(3.12) 
The y-chain will be stable ifAmIn(K) > 0. It can be seen that the oscillations with maximum 
wavenumber are mostly unstable. Substituting K = x into equations (3.11) and (3.12), 
solving (3.12) and substituting the value of y into (3.11), we obtain that the inequality 
A,,, > 0 reduces to 

(3.13) 
Inequality (3.13) is the condition for stability of the y-chain. For small coupling between 
chains, i.e. 1 ai, I /3 1 < 1, this condition is transferred to the weaker condition 

/ 3 + 3 a < 0 .  (3.14) 
The latter result was obtained in our paper [ 5 ]  in the framework of soliton perturbation 
theory. 

L ( K ) V ( X )  = V K M x )  (3.9) 

4 ° K )  is 
hmIn(K)  = 1 - 2a(1 - COS K )  - p2[1 - 2p(1 - COS K ) ]  

= y /d2 ,  and the parameter ,u is determined by the equation 
p ( p  + 1) = 2[1 - 2p(1 - COS K ) ] - ' .  

where 

p(1 - 4a)  + a(3  + 4a) < 0. 
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4. Parameters of y-kinks 

Let us again consider an adsorbed layer with a single x-kink in each x-chain, and denote 
by X, the coordinate of the kink in the nth chain (in the previous section it was assumed 
that all X ,  are the same). It is important that an x-kink can move along the chain, the 
motion being carried out in a periodic Peierls potential 

V,(X,) 2= $&,(l - COSX,). 

Of course, x-kinks are deformable quasi-particles, i.e. the shape and parameters of the 
kink in the nth x-chain depend on the coordinates of kinks in the nearest chains, X,, 
However, for small relative distances between kinks IX, - Xni-ll < 2n, these effects 
may be neglected, and the shape of the x-kink in the nth chain can be described by the 
expression 

u,(x, t )  = US& X,(t>? d). (4.1) 

Let us substitute this expression into the Hamiltonian (2.13) with (2.2) and (2.8), and 
artificially take into account the fact that the motion of the x-kink is carried out in the 
potential V,(X,). As a result, we obtain an effective Hamiltonian 

which describes the system of quasi-particles (x-kinks) placed in the periodic potential 
(the Peierls potential for x-kinks) and interacting by the next-nearest potential 
V(X, - X,-l). The Hamiltonian (4.2) describes the system in the so-called adiabatic 
approximation when radiative effects may be neglected (see [5]). In equation (4.2), 
according to (2.5) and (2.6), 

E = 4d/n and m = 4/nd. (4.3) 
Straightforward calculations lead to the pairwise potential for the kink interactions 
between the nearest x-chains: 

V(X> = - & b K ( X / d )  + pw*(X/d)I 

W1 ( z )  = (1 + z/sinh z )  tanh2(z/2) 

W , ( z )  = 1 - z/sinh z .  

(4.4) 

(4.5) 

(4.6) 

with 

The same result was obtained in [5] by means of soliton perturbation theory. In the case 
of small 1x1 d,  we obtain 

V(X)  = 4 G P  (4.7) 
with 

G = - m(a + p/3) 

as well as at X- cc it follows that 

V ( m )  = E& = - &(& + p). (4.9) 
If G > 0, x-kinks will form a y-chain that is perpendicular to the initial x-chains of 

adatoms. The condition G > 0 coincides with the above inequality (3.14). Thus, for 
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small displacements 1x1 e d the Hamiltonian (4.2) with (4.7) is again that of the FK 
model. The topologically stable soliton (or the y-kink) is the one-soliton solution of the 
sine-Gordon equation reduced from (4.2) and (4.7). This solution describes a state of 
the y-chain with a kink, when one half of the y-chain is shifted to a nearest-neighbour 
minimum of the Peierls potential of x-kinks. 

In the case G % E ~ ,  y-kinks are characterised by a width along the y-chain 
D = b ( 2 G / ~ ~ ) " ~  (4.10) 

where b is the distance between the x-chains. The effective mass is 

(4.11) 

and the energy of kink-antikink pair creation is 2E, where 
(4.12) 

The motion of the y-kink along the y axis is carried out in a periodic Peierls potential 
with amplitude 

EP = 9 n 4 G  exp[ - X ~ ( ~ G / E ~ ) ~ / ~ ] .  (4.13) 
In the opposite case of weakly coupledx-kinks, G -e E ~ ,  we have D = 6 ,  M = 1, 

E = 2n2G (4.14) 
and 

E = 4 ( 2 ~ ~ G ) ' / ~  Î 9 [ - 2 ~ d ( 3 a + P ) ] ' / ~  exp( -nd/4). 

E p  ~p - x2G.  (4.15) 
It is important to note that an infinite y-chain of coupled x-kinks can be torn apart to 
form two semi-infinite y-chains. This process needs the energy =&is; see (4.9). Similarly, 
to remove an x-kink from the y-chain one needs the energy =2Edis. 

It is interesting to note that if the two inequalities 

a>O and - 3 a  < p < - cy, (4.16) 
or the same ones, 

G < O  and Edis ' (4.17) 
hold simultaneously, then the potential V(X)  of (4.4) has a minimum at a value X ,  # 0 
(see also [5]). In this case x-kinks should form an 'oblique' y-chain that makes an 
acute angle with the initial x-chains of adatoms. In the general case the value of X ,  is 
incommensurate with the period of the Peierls potential along the x-direction, a = 2n. 

5. Discussion 

In thissection we discuss the applicability of the model to describe quasi-two-dimensional 
chemisorbed layers. As is well known, adatoms practically always have some dipole 
momentp, which can be experimentally measured because it changes the substrate work 
function [ 161. As a result, there is the so-called dipole-dipole interaction between 
adatoms with the potential [ 141 

where r is the distance between adatoms in the layer. We suppose that this repulsion is 
the main interaction between atoms along x-chains, so that 

Udip(Y) 2p2/r3 (5.1) 
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Figure 2. Dependence of q and 4 introduced by 
5 10 the equations (5.9) and (4.9) on the parameter 
5 = Lid,&a)/&, at different values of v = b/a. 

0 

and 
do = [12Udip(a)]’/’. (5.3) 

The specific properties of the interaction (5.1) caused by its long-range nature are studied 
in our paper [ l l ]  in detail. 

Ifthe interaction (5.1) is the only interaction of adatoms, thenx-kinksin neighbouring 
adatomicx-chains will repel each other. However, in a number of adsystems the aniso- 
tropic ‘indirect’ interaction of adatoms caused by electron exchange through the sub- 
strate also plays an important role [14]. If two adatoms occupy nearest states in the 
neighbouring ‘furrows’ of the (112) face of a BCC crystal, then electron exchange is 
carried out through the nearest ‘bulging’ substrate atom, and we can suppose that the 
energy of the indirect interaction is described by the law Ulnd - exp( - x 2 / a 2 ) .  Then the 
potential v ( x )  takes the form 

u ( x )  = Udlp[(b2 + x’)”’] - U,,d(b) exp( - x 2 / a 2 )  (5.4) 

3Ud1p(b)/b2 - 2U1nd(b)/a2 ( 5 . 5 )  

(5.6) 

(5.7) 

and from equations (2.10), (2.12), (3.2) and (5.3) we may calculate the following 
parameters: 

y = 2vUdlp(b) - .7d1”U1nd(b) 

d’ = 2{2[3Udip(a) -t- vUdip(b)l-7G1’2Uind(b)} 

Uind (b)  > 4 udip(b) ( 5 . 8 )  

61j(3-2v2q)(6v3 + 2 v  - ~ z ” ’ ) + ~ x ’ v ~ ( v  - 4 ~ ~ ” / 2 ) = 0  (5.9) 

where v 
x-chains attract one another if the condition 

b/a. From the inequality (3.14) it follows that x-kinks belonging to different 

is valid, where the value of q is determined by the solution of the equation 

and the parameter stands for Udlp(a)/&a. Similarly, we can introduce the parameter 4 
corresponding to the condition Edls = 0; see (4.9). The dependence of q and 4 on the 
parameter 5 at v = 1 , 2  and 3 as well as at v = 1.63 (the latter value corresponds to the 
(112) face of the BCC crystal) is shown in figure 2 ( q  is shown by full curves and 4 by 
broken curves). 

Thus, the following situations are possible depending on the adsystem parameters. 
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(i) If U,,d(b) > Udlp(b), y-chains of adatoms should be formed. A similar situation 
was observed in a number of adsystems (see the survey [14]). 

(ii) If U,,d(b) > qUd,p(b), y-chains of x-kinks should be formed. This situation is 
experimentally observed for the adsorption of Li on the (112) face of W or MO at the 
coverage (relative concentration of adatoms) 8 d 1 (see [14]). It is interesting that 
usually we have q < 1 at v > 1 (see figure 2). Therefore, in some cases y-chains of 
x-kinks can be formed, while the formation of y-chains of adatoms is not possible. 

(iii) For 

4 U d l p  ( b )  < U I ~  (b )  < 4 U d ~ p  ( b )  (5.10) 

‘oblique’ chains of x-kinks should be formed. Maybe, this situation takes place for the 
adsorption of Li or Na on the (1 12) face of W or MO near the coverage 6’ 3 0.5 (see 

(iv) Finally, in the case Ulnd(b) < max(q, 4)Ud,,(b) x-kinks repel each other so that 
x-kinks should form the c(2 X 2) structure with smoothly changing period along the x 
axis when the concentrations of adatoms is increased. Such structures were observed for 
the adsorption of Cs or K on the ‘furrowed’ faces of W, MO and Re (see details in the 
review [ 141). 

The statistical properties of different kink-like structures of adatoms are considered 
in the book [2]. Here we briefly discuss the effect of formation of y-chains on the diffusion 
characteristics of adlayers. First of all, we note that for non-interacting x-chains of 
adatoms the activation energy of surface diffusion is equal to the amplitude of the 
Peierls potential Ep(d,,). It is also known (see e.g. [ 3 ] )  that the repulsion of x-kinks (case 
(iv)) decreases the activation energy, < E,. In the case of attraction of x-kinks (case 
(ii)) the value of should usually increase. For example, the motion of a finite y-chain 
is carried out by the creation of a y-kink at an edge of the chain, so that = E + E,  
[12]. For an infinite y-chain the motion starts from the creation of a kink-antikink pair, 
and the kink and antikink move in opposite directions. This process needs activation 
energy = 2E + E,. If the infinite y-chain has various defects (‘stopors’), then motion 
of the y-chain as a whole will be possible only after its breaking, so that the energy Edls 
would be needed [2]. Finally, for an ‘oblique’ y-chain of coupled x-kinks (case (iii)) the 
activation energy may exceed the value of E, at Xy: = nu, n being an integer, as well as 
being lower than E, in an incommensurate case, at X* = ( n  + ;)a. 

Thus, in quasi-two-dimensional adatomic layers, there may be various structures of 
x-kinks: direct or oblique y-chains, c(2 X 2) structures, as well as different mechanisms 
of surface diffusion depending on adsystem parameters. These structures and adsystem 
dynamics may be described in the framework of the above model. 

~ 4 1 ) .  
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